投稿须知
  《光谱学与光谱分析》(国际标准刊号:ISSN 1000-0593, CODEN码:GYGFED, 国内统一刊号:CN 11-2200/O4)是中国科学技术协会主管,中国光学学会主办,由钢铁研究总院、中国科学院物理研究所、北京大学、清华大学共同承办的专业性学术刊物,主要报道我国光谱学与光谱分析学科具有创新性的研究 ...

基于Raman光谱的人、犬、兔血液鉴别

作者: 董家林 [1] 洪明坚 [2] 郑祥权 [3] 徐溢 [3]

关键词: 血液 Raman光谱 分类模型 支持向量机

摘要:多物种血液鉴别对于进出口检验检疫、刑事侦检以及野生动物保护等领域尤为重要.传统的血液鉴别方法,在鉴别时常常会对血液样本造成破坏,而Raman光谱作为一种振动光谱可获得物质分子振动、转动信息,进而分析物质组成,为无损血液鉴别技术提供了可能.目前,已经有基于Raman光谱进行血液鉴别的报道,但存在如下两个问题:单一物种样本数量较少,易导致模型欠拟合;均采用线性分类模型,忽略了光谱中非线性因素的影响,降低了模型的分类性能.因此,将支持向量机沿用至Raman光谱血液鉴别中,克服了线性模型只能为光谱中线性关系建模的缺点,有效地吸收了Raman光谱中的非线性关系,实现了对人、犬及兔血液的三分类.实验通过激发波长为785 nm的海洋Raman光谱仪测得共326例样本数据(人110例、犬116例、兔100例),利用Savitzky-Golay平滑滤波、加权最小二乘多项式拟合基线以及矢量归一化等方法对Raman光谱数据进行预处理,并选择2/3的样本数据作为校正集用于模型训练,余下1/3作为测试集用于盲测.与线性分类模型对比实验结果显示,该模型的校正集分类正确率达100%,盲测集分类正确率达93.52%,均优于线性分类模型.实验结果表明,基于支持向量机的分类模型可以用于Raman血液光谱鉴别,具有重要的研究价值和广泛的应用前景.


上一篇: 基于穆勒矩阵的模拟溢油样品荧光偏振特性研究
下一篇: 动态表面增强拉曼光谱在敌瘟磷快速定量分析中的应用

Copyright@2003 China Physical Science & Technology All Rights Reserved
中国物理学会 版权所有 2013 京ICP备05002789号